Impact of release dynamics of laser-irradiated polymer micropallets on the viability of selected adherent cells.
نویسندگان
چکیده
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass-pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s(-1) through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s(-1) and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells.
منابع مشابه
Mechanisms of pulsed laser microbeam release of SU-8 polymer "micropallets" for the collection and separation of adherent cells.
The release of individual polymer micropallets from glass substrates using highly focused laser pulses has been demonstrated for the efficient separation, collection, and expansion of single, adherent cells from a heterogeneous cell population. Here, we use fast-frame photography to examine the mechanism and dynamics of micropallet release produced by pulsed laser microbeam irradiation at lambd...
متن کاملEffect of Low–Level Helium-Neon Laser Irradiation on the Release of Interleukin 6 and Basic Fibroblast Growth Factor from Cultured Human Fibroblasts in High Glucose Medium
Purpose: Low level laser therapy is suggested as a new therapeutic method in diabetic wound healing. This survey aimed to evaluate the effects of low level laser on human fibroblasts cultured in high glucose cultures. Materials and Methods: The human skin fibroblasts were cultured under standard condition. The cells were cultured in high glucose culture medium (15mM/L) for a week and two weeks ...
متن کاملEvaluation of the Effect of Platelet-Rich Plasma on Proliferation and Differentiation of Human Dental Pulp Stem Cells with or without Ga-Al-As Laser
Background Recently, the clinical use of low power lasers has increased, and it is said that wound healing is accelerated by their irradiation. The aim of this study was evaluation of the effect of platelet-rich plasma on proliferation and differentiation of human dental pulp stem cells with or without Ga-Al-As laser. Methods: In this experimental study, human lower third molar dental pulp c...
متن کاملEvaluation of the effect of low-level laser irradiation on viability and ROS production in human hair follicle stem cells
Background: Low-level lasers are used for various medical applications including wound healing and hair loss treatment. Cell Therapy using skin stem cells could be a novel approach to hair transplantation. However, there is no study on the effect of low-level laser on the hair follicle stem cells. So, in this study, we investigated the effect of low level laser irradiation on viability and ROS ...
متن کاملAn Investigation of the Effects of Raw Garlic on Radiation-induced Bystander Effects in MCF7 Cells
Introduction Radiation-induced bystander effect (RIBE) is a phenomenon in which radiation signals are transmitted from irradiated cells to non-irradiated ones, inducing radiation effects in these cells. RIBE plays an effective role in radiation response at environmentally relevant low doses and in radiotherapy, given its impact on adjacent normal tissues or those far from the irradiated tumor. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 9 71 شماره
صفحات -
تاریخ انتشار 2012